

CSL Research Acceleration Initiative

Applications close 12th March 2021

WHY COLLABORATE WITH CSL?

Global Capabilities on your doorstep

Work with one of the world's leading biotech companies

Funding for successful proposals

Access to commercial R&D, clinical, intellectual property, marketing and manufacturing expertise

Accelerate translation of your research to deliver new therapies to patients CSL's Research Acceleration Initiative aims to fast-track discovery of innovative biotherapies through partnerships between CSL and global research organisations.

The 2021 Research Acceleration Initiative will focus on research proposals that align with a CSL **Therapeutic Area** and are amenable to or include a **Modality** as illustrated below. Please see over page for specific **Focus Areas**.

Successful applicants will receive up to \$250k p.a. for up to 2 years (max \$500k funding).

Researchers who wish to apply are required to submit a 300 word online pre-application by **12th March 2021**. Shortlisted applicants will then be invited to submit a detailed proposal in April.

To apply please email jerome.wielens@unimelb.edu.au

Interested researchers are invited to join an online information session to learn more. Webinars will be held: Tues 9th Feb, 2pm – 3pm AEDT OR Fri 12th Feb, 12pm – 1pm AEDT

For webinar links and online application instructions please e-mail **jerome.wielens@unimelb.edu.au**

CSL Research Acceleration Initiative

Focus Areas

CSL is seeking applications in the following Focus Areas:

Modalities

Antibodies

Recombinant **Proteins**

Cell and Gene Therapies

molecules **NOT** of interest

Focus Areas

Autoimmune diseases

Novel biologic targets/ therapeutics or strategies to understand pathomechanisms

Sjögren's syndrome, Systemic sclerosis, SLE, Pemphigus vulgaris, Hidradenitis suppurativa, Dermatomyositis, other rare rheumatological/ dermatological conditions

Inflammation

Novel strategies to modulate the immune system to treat inflammatory diseases (including neuroinflammation e.g. CIDP)

Next generation IVIG / alternatives to plasma-derived **IVIG**

Sickle cell disease

Prophylactic therapies to reduce (progressive, vaso-occlusive crises and chronic vasculopathy

Ischemic and hemorrhagic stroke

Novel biologic targets/ therapeutics or strategies to understand pathomechanisms

Focus on neuroand thromboinflammation/ novel thrombolytics

Biomarker/Omics approaches for patient stratification and drug discovery

Hemophilia

In vivo geneediting and technologies for liver targeted delivery

Interstitial lung diseases

fibrosing) Novel biologic targets/ therapeutics

Biomarker/Omics approaches for patient stratification and drug discovery

Novel animal and human disease models

Acute respiratory distress syndrome

Novel biologic targets/ therapeutics

Biomarker/Omics approaches for patient stratification and drug discovery

Alpha-1 antitrypsin deficiency

In vivo geneediting and technologies for liver targeted deliverv

Rare lipid disorders

In vivo geneediting and technologies for liver targeted delivery

Severe forms of atherosclerosis

Novel biologic targets/ therapeutics or strategies to understand pathomechanisms rejection)

Novel biologic targets/ therapeutics

Myocarditis

Novel biologic targets/ therapeutics

Novel animal and human disease models

Access to patient samples

Tolerance

(Solid organ transplant/HSCT)

Novel strategies or biologics to induce tolerance (T regs, T cell anergy and/or tolerogenic DCs)

Graft vs host disease

Novel biologic targets/therapeutics to modulate the immune response for treatment and prevention

Acute rejection

(Antibody-mediated

Novel biologic Refractory angina targets/ therapeutics to modulate the immune response

Hematopoietic stem cell transplants

Strategies to improve efficacy/ safety, including inducing stem cell mobilisation. reducing toxicity of BM conditioning. improvement of engraftment

CSL is also interested in new uses for our existing products. If you have a proposal in this area, please e-mail RAI@csl.com.au to discuss.